Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri.

نویسندگان

  • N Obradors
  • J Aguilar
چکیده

Biodegradation of polyethylene glycols (PEGs) of up to 13,000 to 14,000 molecular weight has been shown to be performed by a river water bacterial isolate (strain JA1001) identified as Pseudomonas stutzeri. A pure culture of strain JA1001 grew on PEG 1000 or PEG 10000 at 0.2% (wt/vol) as a sole source of carbon and energy with a doubling time of 135 or 150 min, respectively. Cultures metabolized 2 g of polymer per liter in less than 24 h and 10 g/liter in less than 72 h. The limit of 13,500 molecular weight in the size of the PEG sustaining growth and the presence of a PEG-oxidative activity in the periplasmic space indicated that PEGs cross the outer membrane and are subsequently metabolized in the periplasm. PEG oxidation was found to be catalyzed by PEG dehydrogenase, an enzyme that has been shown to be a single polypeptide. Characterization of PEG dehydrogenase revealed glyoxylic acid as the product of the PEG-oxidative cleavage. Glyoxylate supported growth by entering the cell and introducing its carbons in the general metabolism via the dicarboxylic acid cycle, as indicated by the ability of strain JA1001 to grow on this compound and the presence of malate synthase, the first enzyme in the pathway, in extracts of PEG-grown cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism for biotransformation of nonylphenol polyethoxylates to Xenoestrogens in Pseudomonas putida.

A strain of Pseudomonas putida isolated from activated sewage grew aerobically on the xenoestrogen precursor, nonylphenol polyethoxylate (NPEOx, where x is the number of ethoxylate units) as sole carbon source. Comparative growth yields on NPEOav6, NPEOav9, and NPEOav20 (mixtures with average ethoxylate numbers as indicated) were consistent with utilization of all but two ethoxylate units, and ...

متن کامل

Enhancing co-metabolic degradation of trichloroethylene with toluene using Burkholderia vietnamiensis G4 encapsulated in polyethylene glycol polymer.

The biodegradation potential of Burkholderia vietnamiensis G4 (B. vietnamiensis G4) was evaluated under encapsulation in comparison with direct exposure to trichloroethylene (TCE) (0.1, 0.5, 1 and 5 mg/L) and toluene (10 and 50 mg/L), maintaining aerobic conditions. B. vietnamiensis G4 was encapsulated in polyethylene glycol (PEG) polymer. Under suspended conditions, the degradation rate decrea...

متن کامل

Isolation and Characterization of Melanin Producing Pseudomonas stutzeri Strain UIS2 in the Presence of l-tyrosine and Survey of Biological Properties of Its Melanin

Background: Melanin is a negative charge hydrophobic complex pigment. Melanin is produced naturally in bacteria to protect them against UV, free radicals and environmental stresses. Pigment production in bacteria has more advantages than other biosources due to its rapid growth, higher efficiency and easier extraction. The aim of this study was the isolation, biochemical and molecular identific...

متن کامل

Aerobic and anaerobic biodegradation of polyethylene glycols using sludge microbes

The aerobic and anaerobic biodegradation of polyethylene glycols (PEGs) in a model wastewater was investigated employing sludge microbes from Xiamen Terylene plant. The effect of molecular weight (MW) on the aerobic/anaerobic biodegradation of PEGs was assessed by performing shake flasks/sealed flasks experiments, respectively, using organic model wastewater containing PEG 600, 6000 and 20,000....

متن کامل

Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria.

Linear alkyl ethoxylates (polyethylene glycol alkyl ethers) were fermented completely to methane and CO2 in enrichment cultures inoculated with anoxic sewage sludge. Long-chain fatty acids were released as intermediates. No degradation was found with polypropylene glycol and polypropylene glycol-containing surfactants. Two types of primary ethoxylate-degrading bacteria were isolated and charact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 57 8  شماره 

صفحات  -

تاریخ انتشار 1991